Halogens and the Halides

Halogens and Halides

Molecular Properties of Halogens

Stability of halides in various oxidation states

Lewis acidity of p-block halides

Structure and reactivity of p-block halides

Interhalogen compounds - their preparation, structures and stabilities

Oxo-acids and their salts

The Halogens (Salt Formers)

Element	State at Room	Color
	Temperature	
⁹ F	Gas	Pale yellow
¹⁷ C1	Gas	Yellow-green
³⁵ Br	Liquid	Red
53I	Solid	Black / Violet
⁸⁵ At	Radioactive	

Halogens

- Highly reactive do not occur in free elemental state
- Non-polar diatomic molecules
 - Reactivity: $F_2 > Cl_2 > Br_2 > I_2$
- Reaction of X_2 with compounds M-M, M-H, M-C result in formation of M-X bonds M = metal or non-metal
- Can form charge transfer complexes with certain solvents
- Volatile
- Colour of elements and compounds increase with atomic number
- Ions widespread and abundant
- Crustal abundance: $F^- > Cl^- > Br^- > I^-$

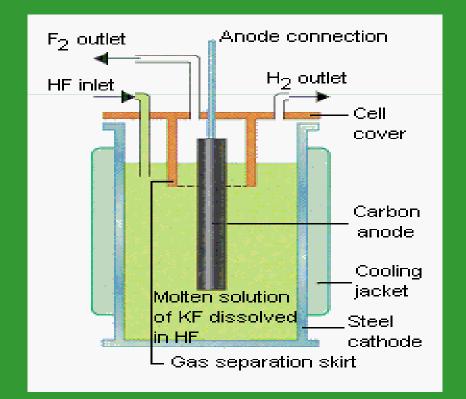
Atomic Properties of the Halogens

X	Electronic Configuration	1 st IE /kJ mol ⁻¹	EA /kJ mol ⁻¹	∆H _{dissoc.} /kJ mol ⁻¹	Van der Waal's Radius /pm	Ionic radius X ⁻ /pm	
	1 20 -20 -5					100	
F	$1s^{2}2s^{2}2p^{5}$	1680.6	332.6	158.8	135	133	
Cl	[Ne]3s ² 3p ⁵	1255.7	348.7	242.6	180	184	
Br	[Ar]3d ¹⁰ 4s ² 4p ⁵	1142.7	324.5	192.8	195	196	
Ι	[Kr]4d ¹⁰ 5s ² 5p ⁵	1008.7	295.3	151.1	215	220	
At	[Xe]4f ¹⁴ 4d ¹⁰ 6s ² 6p ⁵	926	270	_	_	-	
Greenwood, N.N.; Earnshaw, A. Chemistry of the Elements, 2 nd Ed. p. 800							

Fluorine

- Name derived from fluorspar CaF emits light when heated
- Highly toxic 50 ppm
- Causes severe skin burns
- At least two chemists, Paulin Louyet and Jerome Nickles died as a direct result of attempts to isolate fluorine
- In 1886, H. Moissan isolated F_2 electrolysis of KHF₂/HF
- Most electronegative element
- Most reactive element (reacts with practically all inorganic and organic substances, sometimes explosively)
- Extremely strong oxidising agent produces high oxidation states in other reactant elements

Fluorine Uses


- Used in rocket fuel
- To produce UF₆ for nuclear power generation
- Production of SF₆ for dielectrics
- To manufacture fluorinating agents ClF₃, BrF₃ and IF₅

Synthesis of F_2

• Large Scale

Electrolysis of KF dissolved in anhydrous HF

 $2 \operatorname{KHF}_2(s) \longrightarrow \operatorname{H}_2(g) + \operatorname{F}_2(g) + 2 \operatorname{KF}(s)$

http://chemed.chem.purdue.edu/genchem/topicreview/bp/ch10/group7.php

Synthesis of F_2

 Only Chemical synthesis – small scale – Christe 1986

150°C

 $\begin{array}{c} K_{2}MnF_{6}+2SbF_{5}\rightarrow KSbF_{6}+[MnF_{4}] \\ \downarrow \\ MnF_{3}+\frac{1}{2}F_{2}\end{array}$

The stronger Lewis acid SbF_5 can displace the weaker one MnF_4 from its salt. MnF_4 which is unstable, decomposes rapidly to a lower oxidation state, thus liberating F_2

Chlorine

- First halogen to be isolated Scheele 1774 $4NaCl + 2H_2SO_4 + MnO_2 \rightarrow Cl_2 + 2Na_2SO_4 + MnCl_2 + 2H_2O$
- Name chlorine derived from the colour of the gas (chlorus) yellowish or light green
- Toxic rapid death at 1000 ppm
- NaCl most abundant compound, main chlorine source, known from earliest times, used as payment
- Used as a bleaching agent, disinfectant, germicide
- ~ 15000 chlorinated compounds currently used

Chlorine Synthesis

Industrial

- Electrolysis of brine $Na^+ + Cl^- + H_2O \rightarrow \frac{1}{2}Cl_2 + \frac{1}{2}H_2 + Na^+ + OH^-$
- Electrolysis of molten NaCl $2 \operatorname{NaCl} \rightarrow \operatorname{Cl}_2 + 2 \operatorname{Na}$

Small scale Lab Synthesis $4HCl + MnO_2 \rightarrow Cl_2 + MnCl_2 + 2H_2O$

 $16HCl + 2KMnO_4 \rightarrow 5Cl_2 + 2MnCl_2 + 2KCl + 8H_2O$

Bromine

• Isolated in 1826 by A.J. Balard (aged 23)

- Named for its unpleasant smell (Greek for stink)
- Only non-metallic element existing as a liquid at room temp.
- Major use to make ethylene dibromide gasoline additive that acts as a lead scavenger
- Synthesis of MeBr nematocide, pesticide
- Compounds used in photography (AgBr, medicine (KBr sedative, anti-convulsant), flame retardant, phase transfer catalyst, water sanitation, pharmaceuticals

Bromine Synthesis

Industrial

• Oxidation of bromides with Cl₂

 $2KBr + Cl_2 \rightarrow 2KCl + Br_2$

Small scale

• Oxidation of bromides with MnO_2 in acid solution $2Br^- + 4H^+ + MnO_2 \rightarrow Br_2 + 2H_2O + Mn^{2+}$

Iodine

- Isolated from seaweed in 1811 by B. Courtois
- Solid sublimes to violet vapour at atmospheric pressure
- Named for its colour (greek violet coloured)
- Slight solubility in water
- Can form complexes with various electron donating solvents
- Used in photograpy, medicine, analytical techniques, synthesis, catalysts for synthetic rubber manufacture, animal and fowl feed supplements, colourants

Iodine Synthesis

Industrial

• Oxidation of iodides with Cl₂

 $2KI + Cl_2 \rightarrow 2 KCl + I_2$

with MnO_2 in acid solution $2I^- + 4H^+ + MnO_2 \rightarrow I_2 + 2H_2O + Mn^{2+}$

• Reduction of Iodate to I⁻ followed by oxidation $IO_3^- + 3HSO_3^- \rightarrow I^- + 3SO_4^{-2-} + 3H^+$ $5I_7 + IO_3^- + 6H^+ \rightarrow 3I_2 + 3H_2O$

Astatine

- Radioactive
- First isotope ²¹¹At (t ¹/₂ 7.2 h) made in 1940 by Corston, Mackenzie and Segré

$$^{209}_{83}\text{Bi} + ^{4}_{2}\text{He} \rightarrow ^{211}_{85}\text{At} + 2^{1}_{0}\text{n}$$

- Isotopes of natural radioactive series t $\frac{1}{2} < 1$ min
- Synthetic isotopes have half lives up to 8.1 hrs

Charge Transfer Complexes

- May form with solvents that are electron pair donors eg. ROH, R₂O and RNH₂, pyridine, etc
- Eg. Solutions of iodine (electron acceptor) in various electron donating solvents can have a variety of colours depending on the electron donating ability of the solvent

Interhalogen Compounds

Compounds resulting from combinations of halogens with each other

- Four stoichiometries XY, XY₃, XY₅, XY₇
 where X = heavier halogen
- Diamagnetic
- Have even number of atoms
- Most are volatile

Diatomic Interhalogens XY

- 6 known compounds ClF, BrF, IF, BrCl, ICl, IBr
- Variable stability
- Can be synthesized by direct controlled reaction of the appropriate elements (not necessarily pure)

 $X_2 + Y_2 \rightarrow XY$

- Properties intermediate between those of parent halogens
- Chemical reactions classified as
 - Halogenation reactions
 - Donor acceptor interactions
 - Use as solvent systems

Reactions of ClF

• Strong fluorinating agent

– Reacts with metals and non-metals at RT and above to form fluorides and Cl_2

 $W + 6ClF \rightarrow WF_6 + 3 Cl_2$ Se + 4ClF \rightarrow SeF₄ + 2 Cl₂

Acts as a chlorofluorinating agent

 addition across a multiple bond
 CO + ClF → COFCl
 RCN + 2ClF → RCF₂NCl₂

• Reactions with OH or NH groups result in exothermic elimination of HF and chlorination of the substrate $HOH + 2CIF \rightarrow 2HF + Cl_2O$ $HONO_2 + CIF \rightarrow HF + CIONO_2$ $HNF_2 + CIF \rightarrow HF + NF_2CI$ • Lewis acid behaviour (fluoride ion acceptor) NOF + CIF \rightarrow [NO]⁺[CIF₂]⁻

> MF + ClF \rightarrow M⁺[ClF₂]⁻ where M = alkali metal or NH₄

Lewis base behaviour (fluoride ion donor) $BF_3 + 2ClF \rightarrow [Cl_2F]^+[BF_4]^-$

 $AsF_5 + 2ClF \rightarrow [Cl_2F]^+ [AsF_6]^-$

Tetra-atomic Interhalogens XY ClF_3 , BrF_3 , IF_3 , ICl_3 **Synthesis** ClF_3 – in gas phase at 200-300°C, Cu or Ni apparatus: $Cl_2 + F_2 \rightarrow 2ClF_3$ OR $ClF + F_2 \rightarrow ClF_3$ BrF_3 – at room temp $Br_2 + F_2 \rightarrow 2BrF_3$ OR $BrF + F_2 \rightarrow BrF_3$

Tetra-atomic Interhalogens XY

• IF₃ only stable below -30° $I_2 + 3XeF_2 \rightarrow 2IF_3 + 3Xe$

ICl_3 dimerises to I_2Cl_6

•
$$I_2 + 3Cl_{2(1)} \xrightarrow{X.S Cl_{2(1)}} I_2Cl_6$$

• Note: I₂Cl₆ readily dissociates into ICl and Cl₂

ClF₃

- One of the most reactive compounds known
- Explosive reaction with water and organic substances
- Reacts violently with many 'inert' substances
- Ignites asbestos
- Used in bomb attacks in WW2
- Converts most chlorides to fluorides
- Acts both as Lewis acid and base
- Sequence of reactivity of halogen fluorides:
- $ClF_3 > BrF_5 > IF_7 > ClF > BrF_3 > IF_5 > BrF > IF_3 > IF$

Halides

Ionic

– most metal halides ie. Gps 1, 2, $Ln^{2+,3+}$, $Ac^{2+,3+}$

- Some covalent character
- Greater difference in electronegativity, greater ionic character
- F⁻ ion smallest and least polarizable of all anions
- Cl⁻, Br⁻, I⁻ larger, more polarizable

Molecular

- Non- metals, most electronegative elements, metals in high oxidation states (≥ 3)

Organic

Preparation of Anhydrous Halides

• Halogenation of the Elements

 $E + X_2 \rightarrow EX_n$ n dependent on halogen and reaction conditions

- Halogen Exchange
- Important for synthesis of fluorides and organic fluorine compounds

 $RCl + MF \rightarrow RF + MCl$ $C_{6}H_{5}CCl_{3} + SbF_{3} \rightarrow C_{6}H_{5}CF_{3} + SbCl_{3}$

Preparation of Anhydrous Halides

- Halogenation by Halogen Compounds
 - Important for metal fluorides and chlorides
 - Involve mainly treatment of oxides with halogen compounds

 $NiO + ClF_3 \rightarrow NiF_2$ $Sc_2O_3 + CCl_4 \xrightarrow{600^{\circ}C} ScCl_3$

• Dehydration of Hydrated halides $[Cr(H_2O)_6]Cl_3 + 6 SOCl_2 \xrightarrow{\text{Reflux}} CrCl_3 + 12 HCl + 6SO_2$

Hydrogen Fluoride

 $CaF_{2(s)} + H_2SO_{4(l)} \rightarrow CaSO_{4(s)} + 2HF(g) = 200 - 250^{\circ}C$

- Colourless, volatile liquid
- Main source of F_2
- Highly toxic maximum exposure 2-3ppm
- Extremely Corrosive
- Anhydrous HF attacks glass and quartz; safely handled using fluorinated plastics
- HF used to make numerous inorganic compounds, in biochemical research, glass etching, production of teflon, chlorofluorocarbons
- Weak acid in aqueous solution

• <u>Hydrogen Chloride</u>

 $H_2 + Cl_2 \rightarrow 2HCl$ heat NaCl + $H_2SO_4 \rightarrow NaHSO_4 + HCl \sim 150^{\circ}C$

- Colourless to slightly yellow pungent gas
- Fumes on contact with atmosphere
- Uses Hydrochlorination of rubber
 - Production of Al_2O_3 , TiO_2
 - Metallurgical processes for isolating and refining metals : Ge, Sn, V, Mn, Ta, W, Ra
 - Pickling of steel
 - Desulfuring of petroleum
 - Etching of semiconductor crystals,
 - Manufacture of vinyl chloride
 - Pigments for paint

<u>Hydrogen Bromide</u>

 $H_2 + Br_2 \rightarrow 2HBr$ 200-400°C, Pt NaBr(s) + $H_2SO_4 \rightarrow HBr(g) + NaHSO_4(s)$

Colourless, pungent gas

Fumes on contact with atmosphere

Used as a catalyst for organic reactions, synthetic chemistry

• <u>Hydrogen Iodide</u>

 $H_2 + I_2 \rightarrow 2HI$ heat

 $2I_2 + N_2H_4 \rightarrow 4HI + N_2$

- Colourless, pungent gas
- Fumes on contact with atmosphere
- Used to make hydriodic acid, organic and inorganic iodides, as a reducing agent, in disinfectants

- Anhydrous HX used for halogenation

 Most metals, exothermic reaction
- Aqueous HX strong acids (except HF)
 - Acid strength increases down the group
- Extent of H-bonding decreases down the group

Halides of Group 13

Boron

- BX₃ most stable
- Volatile, highly reactive
- Are monomeric trigonal planar molecules
- Melting points and volatilities mirror the parent halogens
- Used as Lewis acid catalysts
- Used in chemical vapour deposition (CVD)

BF₃

Colourless gas Synthesis

 $\begin{aligned} & 6\text{CaF} + \text{Na}_2\text{B}_4\text{O}_7 + 8\text{H}_2\text{SO}_4 \rightarrow 2 \text{ Na}\text{HSO}_4 + 6 \text{ CaSO}_4 + 7\text{H}_2\text{O} + 4\text{BF}_3 \\ & \text{Na}_2\text{B}_4\text{O}_7 + 12\text{HF} \xrightarrow{-6\text{H}_2\text{O}} [\text{Na}_2\text{O}(\text{BF}_3)_4] \xrightarrow{+2\text{H}_2\text{SO}_4} 2\text{Na}\text{HSO}_4 + \text{H}_2\text{O} + 4\text{BF}_3 \end{aligned}$

- Forms tetrafluoroborate anion in dilute solution
 BF₃ + 6H₂O → 3H₃O⁺ + 3BF₄⁻ + B(OH)₃
- Powerful Lewis acid (available p orbital)
- Effective reagent in organic synthesis
- Used as catalyst in various industrial processes

 BX_3

- X = Cl, Br, I
- Stronger lewis acids than BF₃ B₂O₃ + 3C + 3X₂ $\xrightarrow{500^{\circ}}$ 6CO + 2BX₃ for BCl₃ and BBr₃

 $NaBH_4 + 2I_2 \rightarrow BI_3 + NaI + 2H_2$

• Order of Lewis acid strength:

 $BF_3 < BCl_3 < BBr_3 < BI_3$

• Rapidly hydrolysed in water $BX_3 + 3H_2O H_3BO_3 + 3HX$

Stability of BX₃ adducts

Dependent on

- Chemical nature of the donor atom
- Presence of polar substituents on the ligand
- Steric effects
- Stoichiometric ratio of ligand to acceptor
 Form stronger complexes with N, O and F ligands thhan with P, S and Cl

Donor atoms can also be transition metals Eg. [(Ph₃P)₂(CO)ClIr^I(BF₃)₂], [(Ph₃P)₂Pt⁰(BCl₃)₂]

AlX₃

- Form a large number of addition compounds /complexes
- Important in understanding Friedel-Crafts catalysis
- Adducts have varying stability

AlF₃Synthesis

• $Al_2O_3 + 6HF \rightarrow 2AlF_3 + 3H_2O$

Each Al surrounded by octahedron of 6 F atoms
1:3 stoichiometry achieved by corner sharing of each F between 2 octahedra

- AlCl₃
- Forms dimer at 192.4° (mpt)
- Coordination number of Al changes from 6 (crystalline) to 4 at mpt – increased volume, reduced electrical conductivity
- AlBr₃ and AlI₃
- Form dimers in crystalline, liquid and gaseous phases

$Silicon - SiX_4$

- Colourless, volatile reactive compounds
- Synthesis: $Si + 2X_2 \rightarrow SiX_4$
- SiF₄-strongly fuming gas, unstable
- SiCl₄ fuming liquid, stable, bpt. 146-148°
 used to make transistor grade Si and various silicon esters
- SiBr₄ fuming liquid, stable, bpt.154°
- SiI_4 white crystals, stable, mpt. 121°, bpt. 288°

- Tin Halides: SnX₂, SnX₄
- SnX₂ complex structural chemistry
- due to:
 - stereochemical activity of non bonding pair of electrons
 - Sn(II) can increase its coordination number by polymerization into larger structural units such as rings and chains
- Sn(II) non-bonding pair can act as donors to vacant orbitals
- Empty 5p orbital and 5d orbitals can act as acceptors in formation of covalent bonds eg. Adduct [SnX₂(NMe)₃]
- SnX_4 simpler structures

- Tin Halides: Uses
- SnCl₂
 - widely used reducing agent in acid solution
 - Dihydrate used in plating of plastics and silvering of mirrors
 - Perfume stabilizers in bath soaps

Halides of Phosphorus

- Forms three halide series: P_2X_4 , PX_3 , PX_5
- Also forms mixed halides PX₂Y, PX₂Y₃

Trihalides

- Volatile reactive compounds
- Pyramidal molecules

 $2P + 3X_2 \rightarrow 2PX_3$ $3CaF_2 + 2PCl_3 \rightarrow 2PF_3 + 3CaCl_2$

PF₃

- Colourless, odourless gas
- No fumes in air
- Toxic Forms a complex with haemoglobin
- Hydrolyses slowly with water
- Similar to CO as a ligand

PCl₃

- Most important phosphorus halide
- Main source of organophosphorus compounds
 - oil additives
 - Plasticizers
 - Flame retardants
 - Fuel additives
 - Manufacture of insecticides
- Readily oxidized to PCl₅, POCl₃
- Fumes in air
- Readily hydrolysed by water

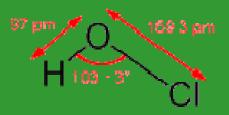
Phosphorus pentahalides

- Adopt a variety of structures
- PF₅ molecular
- PCl₅ molecular in gas phase, ionic in crystalline phase, molecularly or ionically dissociated in solution

Halogen Oxides and Oxo Compounds Chlorine Oxides

- Include Cl_2O , Cl_2O_3 , ClO_2 , Cl_2O_4 , Cl_2O_6 , Cl_2O_7
- Some used extensively in industry (Cl_2O, ClO_2)
- Important in studies of the upper atmosphere
- Strongly endothermic
- Somewhat unstable
- Cant be prepared by direct combination of the elements

Dichlorine monoxide Cl_2O


- Brownish-yellow gas at room temp. (red-brown liquid or solid at lower temps)
- Explodes when heated
- Used to make hypochlorites Ca(OCl)₂
- Is an effective bleach for textiles and wood pulp
- Used to chlorinate organic compounds
- Plays a role in ozone depletion

Oxoacids

- Oxoacid:
- Compound containing oxygen, at least one other element and at least one H bound to oxygen
- Produces a conjugate base by loss of H⁺

Hypohalous acids HOX

HOF, HOCl, HOBr, HOI Halogens in +1 oxidation state HOCl - most commonly known

- Weak acid
- Considered a stronger oxidant than chlorine
- Reacts by transferring an O atom
- NaOCl most popular salt liquid bleach
- CaOCl solid bleach

Hypohalous acids

Uses

- Halogenating agents for aromatic and aliphatic compounds
- Cleavage of methyl ketones to form carboxylates and haloform $\text{RCOCH}_3 + 3\text{OX}^- \rightarrow \text{RCO}_2^- + 2\text{OH}^- + \text{CHX}_3$
- Manufacture of hydrazine
- Bleaching and sterilizing

Halous Acids HOXO

- +3 oxidation state
- Less stable than hypohalous acids

- HOBrO and HOIO have only fleeting presence in aqueous soln.
- HOClO least stable oxoacid of chlorine
- NaClO₂ most stable salt
 - Used for bleaching textiles
 - Source of ClO₂
 - Oxidant for removal of nitrogen oxide pollutants, malodorous and toxic compounds eg. Mercaptans, thioethers, H₂S, HCN

Halic Acids HOXO₂

- +5 oxidation state
- Strong acids
- Strong oxidizing agents

Perhalic Acids – HOXO₃

+7 oxidation state

Perchloric acid

- Highly corrosive, oily liquid
- Violent oxidant when heated
- Explodes on contact with easily oxidizable material
- Extremely hazardous
- Along with perchlorates are the most stable oxo compound of chlorine
- Salts often used in explosives

Perchloric Acid

• Synthesis:

 $NaClO_4 + HCl_{(l)} \rightarrow HClO_4 + NaCl$

- In aqueous solution has very little oxidizing power
- Perchlorates known for most metals
 - Are weak ligands, monodentate, bidentate or bridging

NaClO₄ synthesis:

- Electrolytic oxidation of aqueous NaClO₃ NaClO₃ $\xrightarrow[PbO_2]{[O]}$ NaClO₄

Perchlorates

- Perchlorate anion often used as an inert anion in studies of metal ion complexes in aqueous solution
- Ammonium perchlorate
 - non-freezing blasting compound in mining operations
 - Oxidant in solid fuel missiles

• Magnesium perchlorate

- Efficient desiccant Mg²⁺ ions behave as if isolated in an inert matrix and accordingly, forms a very stable hexahydrate when in contact with water
- Potassium perchlorate
 - Used in fireworks and flares

Perbromic acid

- Was thought not to exist until 1968
- First synthesized by radiochemical synthesis: β-decay of ⁸³Se
- Chemical synthesis: oxidation of alkaline solutions of BrO₃⁻, followed by passage of resulting solution through cation exchange column

 $BrO_3^- + F_2 + 2OH^- \rightarrow BrO_4^- + 2F^- + H_2O$

• Stronger oxidizing agent than perchlorate

Periodic acids and Periodates

4 series known:

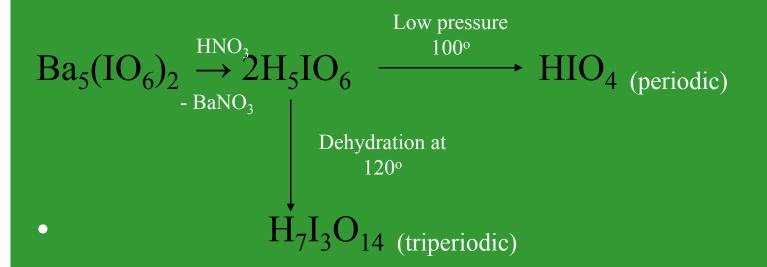
- Periodic HIO_4
- Orthoperiodic $-H_5IO_6$
- Mesoperiodic $H_3 IO_5$
- Triperiodic $-H_7I_3O_{14}$

Interconnected in aqueous solution by a complex series of equilibria

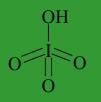
- Involve deprotonation, dehydration and aggregation
- Concentration dependent

Periodic acids and Periodates

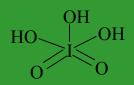
Periodates made by:

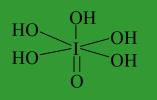

oxidation (electrochemically or with chlorine) of I⁻, I₂ or IO₃⁻ in aqueous solution.

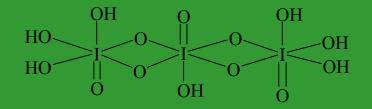
 $IO_3^- + 6OH^- - 2e^- \rightarrow IO_6^{-5-} + 3H_2O$ (PbO₂ anode) $IO_3^- + 6OH^- + Cl_2 \rightarrow IO_6^{-5-} + 2Cl^- + 3H_2O$


- Thermal disproportionation of iodates $5Ba(IO_3)_2 \rightarrow Ba_5(IO_6)_2 + 4I_2 + 9O_2$
- Potent oxidants, useful in organic chemistry cleavage of glycols, α diketones, etc.
- Oxidation potential greatest in acidic solution; diminished with increase in ph

Periodic acid -Synthesis


• Treatment of barium salt with conc. Nitric acid


Periodic acid Structures


Periodic Acid

Mesoperiodic Acid

Orthoperiodic Acid

Triperiodic Acid

Oxidation states of the Halogens

- X_2 molecular 0
- HX hydrohalic acids and salts -1
- HOX hypohalous acids and salts +1
- HOXO halous acids and salts +3
- HOXO₂ halic acids and salts +5
- $HOXO_3$ perhalic acids and salts +7
- Stability of highest oxidation state increases down the group

Halogen Derivatives of Oxoacids

- Obtained by replacement of the H atom of an oxyacid with a halogen atom
- Eg. Halogen(I) perchlorates $XOClO_3$ (X = F, Cl, Br)
- Halogen(I) fluorosulfates $XOSO_2F$ (X = F, Cl, Br, I)
- Halogen(I) nitrates $XONO_2$ (X = F, Cl, Br, I)
- Halogen(III) compounds are also known
- Thermal stability decreases with increase in atomic number of the halogen

Halogen Oxide Fluorides

- Compounds in which X (Cl, Br, I) is bonded to both O and F
- X in high oxidation states due to the presence of F and O
- Variable stability

Polyhalide Anions

Binary anions General formula XY_{2n} (n = 1,2,3,4)

Result from:

- addition of a halide ion to an interhalogen compound
- Reactions which result in halide ion transfer between molecular species

Polyhalide Anions

Ternary anions

- Gen. formula $X_m Y_n Z_p^-$ (m+ n+ p odd)
- Central atom has highest atomic number
- Triatomic ions linear
- Pentaatomic ions square planar
- Heptaatomic ions octahedral (distorted)
- Nonaatomic ions square antiprismatic

- Stability enhanced by large counter-cations eg. Rb⁺, Cs⁺, PCl₄⁺
- For a given cation, thermal stability increases with the symmetry of the polyhalide anion
- Weak oxidants

Polyiodide anions

- Numerous polyiodides crystallize from solutions containing iodide ions and iodine.
- Stoichiometry depends on the relative concentrations of the components and the nature of the cation
- I₃⁻ most commonly seen
- I_n up to I_{16} are known
- I_n^{2-} , I_n^{3-} , I_n^{4-} ions also known

Polyhalonium Cations

- May be tri, penta or hepta-atomic
- Fluorocations colourless or pale yellow
 - Strong oxidizers
 - React explosively
- Other cations orange, red or deep purple
- Syntheses involve interaction of an interhalogen compound with an X⁻ acceptor that can be oxidized
 2ClF + AsF₅ → [FCl₂⁺][AsF₆⁻]
 I₂Cl₆ + 2SbCl₅ → 2[ICl₂⁺][SbCl₆⁻]

Polytetrafluoroethylene (PTFE) - Teflon

Synthetic fluoropolymer

 $\left(\begin{matrix} F & F \\ C & -C \\ F & F \end{matrix} \right)_{n}$

- Numerous applications:
- Non-stick coating for cookware
- Containers and pipes for corrosive and reactive materials
- Automotive industry nuts, bolts, wiper blades, clutch plates, etc...
- Coating for armour piercing bullets
- Computer mice

PTFE - Properties

- Linear molecular structure of repeating $-CF_2-CF_2-$ units
- White crystalline solid, mpt. 327°C
- Stable at low temperatures (down to -240°C)
- Low friction coefficient of friction lower than that of any other solid
- Non-wetting hydrophobic
- Oil resistant oleophobic

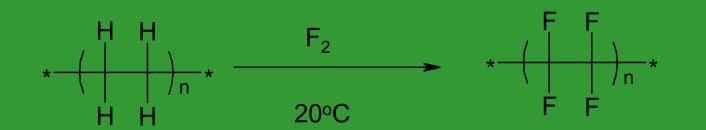
PTFE – Properties Cont'd

- High impact strength
- Insoluble in all solvents below 300°
- Very low adhesiveness
- Inert
- Non-flammable
- Weather resistant
- Resistant to chemical breakdown (except F₂, CF₃, molten alkali metals).

PTFE Synthesis

Emulsion polymerization

- Liquid tetrafluoroethylene is submerged in an insoluble liquid to form an emulsion.
 - Carried out under pressure in the presence of free radical catalysts



free radical initiator eg. H₂O₂, HCl, hv high pressure

F F *--(| |) (| |)n* F F

PTFE Synthesis

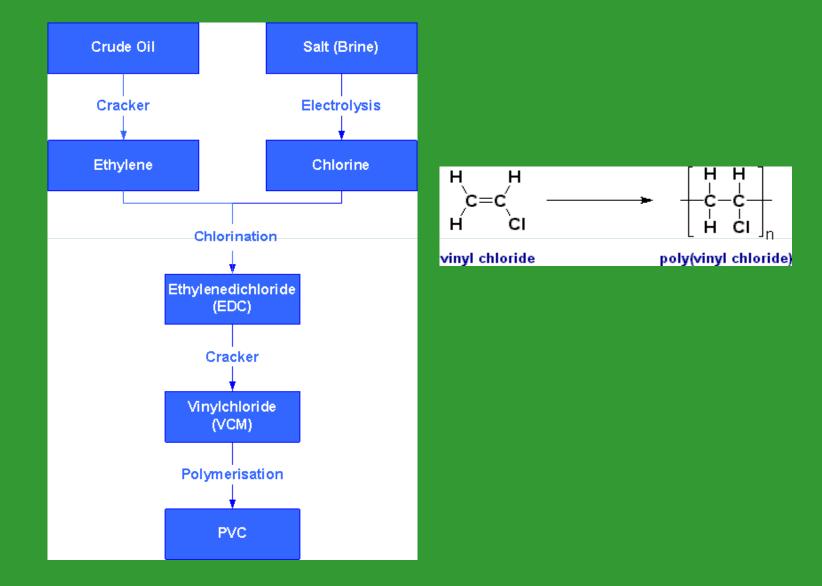
• Reaction of polyethylene with fluorine

PTFE - Safety Concerns

- Breaks down to give off toxic chemicals at elevated temperatures
- Teflon frying pan can reach 383 °C in 5 mins
- 240°C ultra-fine particulates toxic; kill rats
- 360°C
- tetrafluoroethylene possble carcinogen
- hexafluoropropene eye, nose and throat irritation, decreased memory/learning
- monofluoroacetic acid extremely toxic

PTFE - Safety Concerns

- 470°C Silicon tetrafluoride toxic, corrosive gas
- 475°C perfluoroisobutene toxic; fluid build up in lungs
- 500°C Carbonyl fluoride irritant, chest pains, fluid in lungs
- Higher temperatures hydrogen fluoride, trifluoroacetic acid fluoride, perfluorooctanoic acid


Polyvinyl chloride PVC

- Among the oldest polymers
- Widely used
- Versatile
- Tough
- Physical appearance can be varied to suit end use- eg addition of plasticizers for softness
- Flame resistant
- Durable
- Resistant to acids and alkalis, oils and greases
- Stable

PVC - Applications

- Packaging
- Toys
- Construction materials replacing wood, concrete and clay
- Electric wires
- Medical devices

PVC - Production

PVC - Safety

Concern over use of plasticizers
 – Toys, blood bags, tubing

Phthalates – preferred plasticizers – subject to leaching

- Toxic
- Carcinogenic

• Vinyl chloride – highly toxic, carcinogenic